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A B S T R A C T   

The northern branch of the North Anatolian Fault in the Sea of Marmara (SoM) shows a complex seismological 
behavior including shallow, fluid-related seismicity, deep seismicity, and locked and creeping segments. On July 
25, 2011, a Mw 5 earthquakes occurred at a depth of ∼ 11.5 km in the western SoM and immediately followed by 
hundreds of triggered micro-earthquakes mostly outside the rupture area of the mainshock. We here present the 
application of empirical subspace detector to improve the detection of small events belonging to this sequence 
and compare these results with the match-filter technique. Using first the station with the highest signal-to-noise 
ratio, three main clusters are obtained with one cluster of 27 events and two clusters of 3 events leading to 1056 
child-events detected. The child-events were manually selected and picked, and 457 child-events were located 
with NonLinLoc. The empirical subspace detector leads then to ∼ 5.5 times more events located compared with 
the number of parent events, and ∼ 1.6 times more events located than the match-filter technique. The subspace 
detector technique is sensitive mostly to the frequency band for filtering and the clustering parameters. Small 
changes in these parameters can lead to significantly different detection results. Extending the subspace detector 
to include network subspace statistics instead of a single station allows the inclusion of different stations and 
components, and should decrease the important false detection rate observed. The application of the empirical 
subspace detector to this sequence confirms the potential of this technique to improve event detection and better 
define spatio-temporal seismicity patterns.   

1. Introduction 

Automatic earthquake detection is a long-standing issue due to the 
presence of both random and coherent noises contaminating seismo-
logical data. Different methods addressing this issue have been devel-
oped over the years, including routine algorithms such as the STA/LTA 
(short-term average/long-term average) (e.g., Romero et al. (2016)), 
algorithms based on autoregressive models and Akaike Information 
Criterion (e.g., Sleeman and van Eck (1999)), advanced data filtering 
(Botella et al., 2003), and more recently the developments of schemes 
based on machine learning and convolutional neural networks (e.g., 
Perol et al. (2018); Mousavi et al. (2020); Wilkins et al. (2020); Wisz-
niowski et al. (2021)). These algorithms can detect earthquakes with a 
wide variety of waveforms. 

Other methods based on waveform similarity, particularly appro-
priate for earthquake sequences containing event clusters, find events 
that are not picked by standard detection methods such as the STA/LTA 

because of their low signal-to-noise ratios (SNR). The obtained similar 
events are smaller events located close to the original events having only 
slightly different source and propagation path. A widely used method 
called match-filter is based on the similarity between parent events with 
high SNR with other events, called child-events, with low SNR buried 
within the continuous time series (e.g., Gibbons and Ringdal (2006); 
Brown et al. (2008); Mu et al. (2017)). Event similarity measures based 
on waveforms across the complete network are especially well-suited for 
event detection (Brown et al., 2008). Using detection methods based on 
template matching lead to a large increase in the number of events 
detected, especially for event clusters. 

Contrary to the match-filter method, subspace detection first builds a 
base of singular vectors (“signal vectors”) using events from the same 
cluster to represent the information contained by the original events 
(Harris, 2006). Using these singular vectors instead of template events, 
the subspace detection method introduces more variability within the 
waveforms employed for detection and can lead to the detection of more 
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events than the match-filter. Since its introduction by Harris (2006), the 
subspace detection method has been applied in different contexts 
(Maceira et al., 2010; Song et al., 2014; Chambers et al., 2015; Soche-
leau et al., 2015; McMahon et al., 2017; Bestmann and van der Baan, 
2017; Morton et al., 2018). The empirical subspace detection technique 
is a variant of the subspace detection using the event stack and its de-
rivatives for detection instead of singular vectors. 

In the present study we focus on a case study comparing the match 
filter with the application of the empirical subspace detection technique 
to the mainshock-triggered events sequence containing a Mw 5 earth-
quake from July 25, 2011, in the Sea of Marmara (SoM). The SoM is 
located in the western part of the North Anatolian fault (NAF) (Fig. 1). 
The northern branch of the NAF in the SoM, passing approximately 15 
km south of the city of Istanbul, forms a seismic gap capable of gener-
ating an earthquake of magnitude ∼ 7–8 (Lange et al., 2019). Since the 
last two large earthquakes in 1999 that happened at the eastern end of 
the SoM, many studies have been carried out to better define the seis-
mological behavior of the NAF in the SoM (e.g., Bohnhoff et al. (2013); 
Schmittbuhl et al. (2016a); Lange et al. (2019)). 

The NAF in the SoM is characterized by high seismic activity but this 
activity is not evenly distributed. Intense seismic activity is located 
mostly within the Çinarcik, Central and Tekirdağ basins and the Western 
High (Tary et al., 2011; Karabulut et al., 2011; Yamamoto et al., 2015, 
2017; Schmittbuhl et al., 2016a; Batsi et al., 2018). Zones exhibiting 
high seismic activity were generally associated with creeping, or 
partially creeping segments (Yamamoto et al., 2019), while zones 
showing low seismic activity were associated with locked segments 

(Schmittbuhl et al., 2016a; Lange et al., 2019). Seismic repeaters, 
constituting another potential indicator of creeping behavior, are also 
observed in different areas of the NAF in the SoM such as the Western 
High (Schmittbuhl et al., 2016b; Bohnhoff et al., 2017). 

The Mw 5 event from July 25, 2011, is one of the highest magnitude 
earthquake that recently occurred in the western SoM (Pinar et al., 
2016), together with the Mw 5.8 Silivri earthquake sequence in 
September 2019 (Karabulut et al., 2021). The earthquake from July 25, 
2011, located at ∼ 11.5 km below the Western High (Fig. 1), was almost 
immediately followed by few hundreds of shallow events (<5 km) (Géli 
et al., 2018). These events are located approximately 5–10 km away 
from the mainshock hypocenter, well outside the mainshock rupture 
area, and are hence considered as triggered seismicity and not after-
shocks. The position and immediate triggering of this sequence could be 
explained by the combined effects of dynamic stresses and local pore 
pressure increases (Tary et al., 2019). 

We employ 85 parent events with high SNR, including shallow and 
deep events, to design the empirical subspace detector. The child-events 
detected with the empirical subspace technique are manually selected 
and picked, and then located with NonLinLoc (Lomax et al., 2001, 2009) 
using a 3D velocity model (Géli et al., 2018). We then compare the re-
sults of the original detections, the match-filter detections (Tary et al., 
2019) with those obtained with the empirical subspace technique. We 
finally discuss the possibility to include all stations of the network within 
the empirical subspace detector, and the influence of the main param-
eters on the results. 

Fig. 1. a) Location of the SoM and the North 
Anatolian Fault zone (NAFZ). The position of the 
map in b) is shown by the black rectangle. b) 
Positions of the OBS deployed in 2011 in the 
western part of the SoM (triangles). The OBS used 
for subspace detection processing are indicated 
by yellow triangles. Active and supposedly inac-
tive faults are indicated by white and black lines, 
respectively (Şengör et al., 2014). c) East-West 
cross-section through the 3D velocity model of 
Géli et al. (Géli et al., 2018) at latitude N40◦48’. 
In both b) and c), parent events are indicated by 
circles scaling with their magnitudes. Red, green 
and blue circles are parent events corresponding 
to cluster 1, 2 and 3, respectively. Abbreviations: 
TB (Tekirdağ basin), WH (Western High), CB 
(Central basin). (For interpretation of the refer-
ences to colour in this figure legend, the reader is 
referred to the Web version of this article.)   

C. De La Hoz et al.                                                                                                                                                                                                                             



Computers and Geosciences 152 (2021) 104738

3

2. Dataset 

Ten autonomous Ocean Bottom Seismometers (OBS) from IFREMER 
(Institut Français de Recherche pour l’Exploitation de la Mer) were 
deployed from April 15, 2011, to July 31, 2011, mostly in the central 
and western SoM (Fig. 1). One of the OBS (OBS-2), that was located on 
the Western high above the earthquake sequence, stopped functioning 
on July 1, 2011. In this area, the network is complemented by two 
permanent seafloor observatories from KOERI (Kandilli Observatory and 
Earthquake Research Institute). The OBS have a 3-C short-period 
geophone (Geospace GS-11D, natural frequency of 4.5 Hz) and a hy-
drophone with a sampling frequency of 125 Hz. The permanent seafloor 
observatories have a 3-C broad-band seismometer (Guralp CMG-3T) and 
a hydrophone with a sampling frequency of 100 Hz. 

In this study we focus on the data from a sub-network centered on the 
Western High that consists of five OBS (OBS-1, 3, 5, 6 and 7) and one 
seafloor observatory (KOERI-4). This selection is based on the data 
quality of the time picks done for the original dataset (Géli et al., 2018). 
The zone of the NAF in the Western High is characterized by shallow and 
deep seismicity (Schmittbuhl et al., 2016a; Géli et al., 2018), and by 
important fluid activity with different expressions such as gas bubbles in 
the water column (Dupré et al., 2015), free-gas accumulations and gas 
hydrates (Thomas et al., 2012), and important mud bodies in the su-
perficial sediments (Grall et al., 2013). 

3. Methods 

3.1. Match-filter and subspace detection 

Starting with 85 parent-events (Fig. 1), the match-filter was applied 
to continuous time series from April 15, 2011, to July 31, 2011, filtered 
between 15 and 25 Hz. Cross-correlations between parent events and the 
time series were performed separately for each OBS, then re-aligned 
using parent event moveout, summed, and a detection was declared if 
a median absolute deviation (MAD) threshold of 10 is reached with at 
least three cross-correlation coefficients greater than 0.65. Pick timings 
can be calculated automatically using cross-correlation (Tary et al., 
2019). In the present case we select and pick manually the events in 
order to follow the same procedure as for the subspace detection 
method. Child-events are then located with NonLinLoc and a 3-D ve-
locity model of the SoM (Bayrakci et al., 2013; Géli et al., 2018). Using 
this match-filter approach, 1266 events were detected, 455 events were 
selected and picked (i.e., 811 events were false detections), and 365 
child-events with at least 6 phase picks were finally located. Out of these 
365 events, 88 occurred before and 277 after the mainshock. Performing 
the selection and picking mostly manually, instead of automatically as in 
(Tary et al., 2019), increased more than two-fold the final number of 
events located. 

As with the match-filter, the subspace detection method classifies a 
signal window taken from continuous data as either signal plus noise or 
noise (Maceira et al., 2010). For the subspace method, the continuous 
data is assumed to be a combination of orthonormal signal vectors U and 
a set of weights. The set of orthonormal vectors is first determined 
through the singular value decomposition (SVD) of a matrix of parent 
events A previously classified in clusters as, 

SVD(A)=USVT, (1)  

where U is a matrix of left-singular vectors used for detection, S is a 
matrix containing the singular values, and V is a matrix of right-singular 
vectors. The similarity metric for detection corresponds to the projection 
of the continuous data d on a subset of singular vectors Us coming from 
matrix U as, 

z=
dTUsUT

s d
dTd

. (2) 

In the present study we use the empirical subspace detection tech-
nique (Barrett and Beroza, 2014) instead of the subspace detection 
method (Harris, 2006) due to its higher detection potential. In this case, 
the matrix Us is made of the stack and its first derivative relative to time 
which are sometimes highly similar to the first and second singular 
vectors, respectively, of the standard subspace method. The empirical 
subspace detector is applied using a single component of a station 
(OBS-1, vertical component), using the complete event waveforms 
including P- and S-waves, and with data band-pass filtered between 5 
and 15 Hz. For clustering, we use the single-linkage algorithm based on 
the Euclidean distance between events and a cross-correlation coeffi-
cient threshold of 0.8 to determine links between events. A conservative 
detection threshold on z was determined by trial-and-error and set to 0.5 
(Fig. 2). In order to include the geophone’s 3 components, we tested 
multiplexing parent-event waveforms and continuous data before 
detection but this did not yield better detection than using a single 
component. The number of true and false detections both decrease due 
to multiplexing because this process increases the template singularity 
which makes the detector more specific. Automatic picking with the 
singular vectors or the stack was also tested but due to significant dif-
ferences between singular vectors and detected signals, this picking is 
not precise enough to obtain reliable earthquake locations. We then 
picked manually the events detected. 

3.2. Potential use of network subspace detection 

The original method uses data from a single station and one 
component to compute detection statistics following equations (1) and 
(2) (Harris, 2006; Barrett and Beroza, 2014). Detection statistics based 
on single stations generally lead to many false detections due to 
impulsive noises present in the data, even though this is less a problem 

Fig. 2. Detection statistics using equation (2) (1 hour on 26/07/2011 starting 
at 0am) for cluster 1 and the selected stations of the network, as well as the sum 
of station detection statistics calculated using equation (3). The gray dashed 
line indicates the detection threshold of 0.5 for OBS-1. Timings of parent events 
(black dots) and child-events for each cluster are also indicated by white dots 
(cluster 1), white diamonds (cluster 2) and white triangles (cluster 3). 
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using template matching methods. Combining these statistics for 
different stations of the network should emphasize coherent events 
throughout the network and decrease the amount of false detections. 

We extend the subspace detection method to include all stations of 
the network using the following steps. The station as well as the 
component with the best SNR, OBS-1 and its vertical component in this 
case, are used as a reference to cluster the events. Events belonging to a 
specific cluster, selecting only those that have cross-correlation co-
efficients greater than 0.8, are used in the singular value decomposition 
and to compute the stack for each OBS. Detection statistics using 
equation (2) are then calculated for each OBS and finally summed after 
delaying each time series (e.g., by an average or median moveout 
calculated over all events belonging to the cluster) using, 

zs(ts)=
∑n

i=1
wizi(ti), (3)  

where n is the number of stations, ti is the specific timing for station i 
after taking into account event moveouts, and ts the summation timing 
(Fig. 2). Each detection statistic can be individually weighted (wi) to 
take into account different data quality. 

4. Results 

4.1. Single station event detections 

Using 85 parent events and the parameters described in the previous 
sections, we obtain 3 main clusters with 3 or more events. All 3 clusters 
belong to the superficial seismicity mainly located between 0 and 5 km 

depths. The first cluster contains 27 events, and clusters 2 (Fig. 3) and 3 
contain 3 events (see Fig. 1 for cluster locations). From a total number of 
detections of ∼ 16900 and after removing false detections and dupli-
cates, 1056 events were identified including 426, 408 and 222 events for 
cluster 1, 2, and 3, respectively. We then selected events with at least 6 
phase picks for location leading to 180, 155 and 122 events for cluster 1, 
2, and 3, respectively (Fig. 4). 

4.2. Network empirical subspace 

In the present case, waveforms from OBS vertical components and 
the same frequency band (5–15 Hz) were employed to build the cross- 
correlation matrix and cluster the events for all OBSs. Detection statis-
tics obtained for each OBS are not summed using a specific moveout but 
in a sliding window of 2 sec to take into account potential different 
moveouts. Each z − statistic time series is first normalized by their 
maximum amplitude, then re-weighted and finally summed altogether. 
Only OBS-1 z − statistic has a higher weight of 2, and z − statistics of 
OBSs 5 and 7 are not included due to their lower data quality (Fig. 5). 
Any z value lower than 0.25 is set to 0 in order to avoid contaminating 
the sum. 

Fig. 5a and b shows the case of a an event seen at different OBSs and 
presenting a high summed zs value. While many events detected using 
the single station empirical subspace detector are also detected using the 
zs statistic (up to 100% of the events for some hours), many are left out 
due to the specificity of the current dataset. In some instances, the stack 
and first stack derivative used for detection are significantly different 
from some event waveforms at some stations only. This leads to lower zs 
values and difficulties to detect those events (Fig. 5c and d). Here, data 
quality is much higher for one station in particular (OBS-1), decreasing 
the advantage of using network statistics for detection. The empirical 
subspace method using network statistics would be indicated for denser 
networks. 

4.3. Event locations 

Locations obtained with NonLinLoc of parent and child-events using 
the match-filter and the subspace detector are shown in Fig. 6. In the 
present case, there exists for many events an ambiguity between shallow 
(0–5 km) and deep locations (10–30 km) with probability density 

Fig. 3. a) Waveforms (OBS-1, vertical component) corresponding to the 3 
parent-events belonging to cluster 2 (thin black lines), and the event stack 
(thick black line) and 1st stack derivative (gray line) used for the empirical 
subspace detection. b) Selected child-events (155) obtained with the empirical 
subspace detector. All waveforms are aligned on their P-wave arrivals (∼ 0.3 
sec.) and band-pass filtered between 5 and 15 Hz. 

Fig. 4. Full waveform cross-correlation coefficients between child-events 
detected with the empirical subspace detector (OBS-1, vertical component, 
signals filtered between 5 and 15 Hz). 
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functions having two maxima. This is due to the presence of localized, 
low velocity layers in the first few km and the lack of a station above the 
seismicity. This also explains the inclusion of two deep events in cluster 
1 (Fig. 1). Tests carried out using the parent events (Géli et al., 2018) and 
comparisons between deep (i.e., the mainshock) and shallow parent 
events (Tary et al., 2019) indicate that shallow locations are more likely. 
Child- and parent-events generally have high cross-correlation co-
efficients and similar travel-times showing that they share the same 
source area. We then restricted the location procedure to positions 
above 10 km in NonLinLoc in order to avoid the shallow-deep ambi-
guity. These are the locations shown in Fig. 6c. 

5. Discussion 

5.1. Empirical subspace detections 

The first event detected after the mainshock (25/07/2011 18:03:16) 
by the empirical subspace detector and located in the shallow cluster 
(depth of 1.6 km) occurs less than 6 min after the mainshock. Since most 
of the child-events are highly correlated to parent events located in the 
shallow cluster, these events are likely located in this cluster as well. The 
total number of detections for the match-filter is approximately three- 
times lower than for the empirical subspace detector (327 and 1056, 
respectively) considering the same time period. The apparently low 
number of detections for both techniques is due to the low number of 
stations able to record the events. Moreover, for the subspace detector, 
the setup using a single station for detection and the similarity between 

moveouts due to the high seismicity concentration in this area for this 
time period limits the waveform variability and is impacting more the 
subspace detector than the match-filter. Despite this limitation, the 
numbers of selected and located events (277 for the match-filter and 457 
for the empirical subspace detector) are higher for the subspace detec-
tion method. This arises partly due to the larger waveform variability 
included in the subspace detection method, and possibly also due to 
differences in each method settings leading to different expected false 
alarm rate (Song et al., 2014). 

We introduce one possible way to extend the subspace method to 
include all stations of the network. Using network statistics should allow 
to both detect a larger variety of events including a larger variety of 
moveouts and SNR, and avoid a number of false alarms by combining 
information at different stations. In the present case, the network sub-
space detector is setup using a time window to search for different 
moveouts, but other schemes are possible such as, for example, the use 
of average moveouts of events from know clusters. In a similar way, one 
could include all 3 components of each station as well. Having different 
detection statistics for each station and component leaves the possibility 
to combine then in different ways to maximize event detection. 

One of the most important steps for the subspace detection technique 
is the selection and clustering of parent events. The clustering based on 
complete waveforms as well as the detection are mainly controlled by 
arrivals with higher SNR (high amplitude conversions and S-waves in 
our case). The clustering step is in turn impacted by the frequency band 
used and the threshold set on the cross-correlation coefficients to link 
events. For example in our case, changing the frequency band from 5 - 

Fig. 5. Examples of waveforms and z statistics for two micro-earthquakes (a) and b): 26/07/2011 00:08:10; c) and d): 26/07/2011 01:52:15). All waveforms are 
OBSs vertical components and band-pass filtered between 5 and 15 Hz. 
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15 Hz to 5–20 Hz changes the number of events in cluster 1 from 27 to 
11, and then might change which events belongs to other clusters. This 
effect is due to the template events becoming more singular (i.e., owing 
to noisier and more complex signals) when one use wider frequency 
bands, decreasing their possible similarity with other events or contin-
uous time series. These parameters may be chosen by reviewing the 
clustering results using different parameter sets (e.g., presence of noisy 
traces, high similarity of waveforms in clusters, high number of events in 
clusters). In the present study, we determine these parameters using the 
station with the best SNR and then use the parameters corresponding to 

these clustering results to carry out the SVD or the stack on the other 
stations of the network. If a number of stations have similar SNR, one 
could combine the clustering information from these stations to define 
the final set of events to include in the clusters. Which events to include 
in the SVD/stack at other stations could also be refined using an addi-
tional clustering step based on their cross-correlation coefficients for 
each station. 

Fig. 6. a) Temporal evolution before and after the mainshock of the number of events detected with the match-filter and the empirical subspace detector. Locations, 
constrained to less than 10 km depth, obtained for the child-events detected with the match-filter in b) and the empirical subspace detector in c), showing events with 
more than 6 phase picks and uncertainties lower than 10 km. 
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5.2. Event sequence interpretation 

Both the match-filter and empirical subspace detection processes 
confirm the important increase in microseismicity just after the Mw 5 
mainshock (25/07/2011 17:57:34). The sequence is taking place below 
the Western High in a partially creeping section of the NAF (Yamamoto 
et al., 2019). Background seismicity in this zone is also characterized by 
an elongated cluster going from deep (∼ 15–17 km) to shallow levels (∼
0–5 km) (Schmittbuhl et al., 2016a). Moderate size events (i.e., 4 <
Mw <6) occurring at different depth levels in the SoM lead to static stress 
variations only in their vicinity, and important dynamic stresses in the 
sedimentary basins. To evaluate a potential influence of deep events of 
different magnitudes on the different depth levels, we compute dynamic 
Coulomb stress variations Δσc due to the mainshock with (Beeler et al., 
2000), 

Δσc =Δτ − μ(Δσn +ΔP), (4)  

where Δτ is the shear stress variation in the slip direction calculated on 
the receiver fault plane, Δσn is the normal stress variation, μ is the 
friction coefficient, and ΔP is the pore pressure variation given by ΔP =

− B Δσkk
3 (with B the Skempton coefficient, and Δσkk/3 the mean stress 

variation). Dynamic stress variations are calculated using AXITRA 
(Cotton and Coutant, 1997), which employ the reflectivity method 
(Kenneth and Kerry, 1979) with the discrete wavenumber method 
(Bouchon, 1981), a 1D velocity model extracted from the 3D velocity 
model of Géli et al. (2018), and receiver fault parameters corresponding 
to the composite focal mechanism of the superficial events (Batsi et al., 
2018). Computations parameters are summarized in Table 1. Fig. 7a 

shows that significant dynamic stress variations, between ∼ 300 kPa and 
∼ 35 kPa in absolute value, are present at all depths. Events with 
magnitudes between Mw4 and 5 generate dynamic stresses between ∼ 5 
and ∼ 35 kPa in shallow sediments. 

The additional events detected by the match-filter before the main-
shock are mostly located at the approximate position of the superficial 
cluster, with very few events located at depth. As shown by Schmittbuhl 
et al. (2016a) as well, the shallow part of the Western High presents then 
a sustained seismic activity. Dynamic stress variations of the order of 
few tens of kPa or more, together with high pore pressures in this area, 
could then promote the seismicity in this region. The cause of the July 
2011 triggered event sequence, could then involve an interplay of few 
factors including a deep-shallow connection for seismicity and fluids 
(Géli et al., 2018), in addition to fault and stress complexity (Schmitt-
buhl et al., 2016a), and dynamic triggering from a moderate size event 
in levels with high fluid pressures. Similar seismicity promoting condi-
tions of high pore pressures and tectonic activity could be present in 
other parts of the SoM (e.g., Grall et al. (2018)). 

6. Conclusion 

We present a comparison of match filter and empirical subspace 
methods applied to a case study in the SoM including a large event 
cluster. The empirical subspace method should give a larger number of 
detections since it keeps more variability in the waveforms used for 
detection (i.e., singular vectors or the stack and its derivatives). In the 
present case, 277 and 457 events were located using the match-filter and 
the empirical subspace detector, respectively, during the same time 
period. In comparison with the 85 original parent events, this corre-
sponds to a ∼ 5.5-fold increase in the number of events located. We are 
here limited mainly by the number of stations in the network, limiting 
the number of phases for location. The subspace detection technique can 
also be extended to include the 3-components of all stations of the 
network in order to both include more events and decrease the number 
of false detections. For the Mw 5.0 July 25, 2011, triggered sequence, 
dynamic stress perturbations could promote microseismicity in the 
shallow section of the NAF below the Western High. Improved detection 
to extract smaller magnitude events from continuous data helps then to 
better define the spatio-temporal evolution of microseismicity, in turn 
improving the understanding of its different driving processes. 

Data availability 

Seismological data from IFREMER used in this study are available at 

Table 1 
Dynamic stress variation computing parameters.  

Mainshock focal mechanisma strike 113, dip 83, rake − 148 
Superficial event focal mechanisma strike 300, dip 34, rake − 143 
Friction coefficient μb  0.25 

Skempton coefficient Bc  0.6 
S-wave velocity β 3000 m/s 
Rigidity modulus G 30 GPa 
Rise times τd  0.07 s (Mw 3), 0.14 s (Mw 4), 0.3 s 

(Mw 5)  
aBatsi et al. (Batsi et al., 2018)  
b for clay-rich faults (Remitti et al., 2015)  
c case of water-saturated rocks  
d calculated using scaling relationships ( 

Geller, 1976)   

Fig. 7. Dynamic stress calculations of Coulomb stress for a) different receiver fault depths (minimum and maximum stresses in each case), and b) different mainshock 
magnitudes (mainshock and receiver fault at 11.5 and 1.5 km depth, respectively). The receiver fault corresponds to the composite focal mechanism for the su-
perficial events. See Table 1 for the computing parameters. 
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Computer code availability 

A series of MATLAB codes implementing the technique as well as the 
parent events and a continuous data example are provided in the 
following Github repository: https://github.com/EkMuyal/SubspaceDe 
tection. The main codes are named “subspace_marmara_net” and were 
developed by C. De La Hoz and J. B. Tary from codes provided by G. 
Beroza. The total code size is 865 MB including parent events and a 
continuous data example. 
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Schmittbuhl, J., Karabulut, H., Lengliné, O., Bouchon, M., 2016a. Seismicity distribution 
and locking depth along the main marmara fault, Turkey. G-cubed 17, 954–965. 

Schmittbuhl, J., Karabulut, H., Lenglién, O., Bouchon, M., 2016b. Long-lasting seismic 
repeaters in the Central basin of the main marmara fault. Geophys. Res. Lett. 43, 
9727–9534.  

Şengör, A.M.C., Grall, C., Imren, C., Le Pichon, X., Görür, N., Henry, P., Karabulut, H., 
Siyako, M., 2014. The geometry of the North Anatolian transform fault in the Sea of 
Marmara and its temporal evolution: implications for the development of 
intracontinental transform faults. Can. J. Earth Sci. 51 (3), 222–242. 

Sleeman, R., van Eck, T., 1999. Robust automatic P-phase picking: an on-line 
implementation in the analysis of broadband seismogram recordings. Phys. Earth 
Planet. In. 113 (1), 265–275. ISSN 0031-9201.  

Socheleau, F.-X., Leroy, E., Carvallo Pecci, A., Samaran, F., Bonnel, J., Royer, J.-Y., 2015. 
Automated detection of Antarctic blue whale calls. J. Acoust. Soc. Am. 138 (5), 
3105–3117. 
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